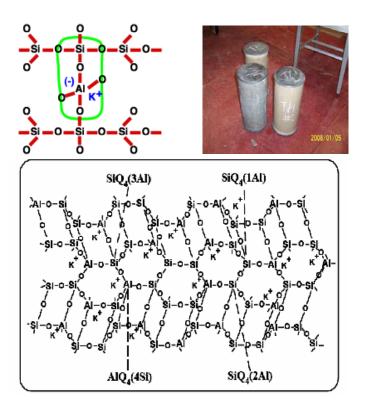
Engineering Fly Ash-based Geopolymer Concrete


E. Ivan Diaz-Loya Ph.D. Candidate Erez N. Allouche Ph.D., P.E.

OUTLINE

- Geopolymers
 - Structure
 - Reactions
 - Properties
- Sustainability
- Engineering fly ash-based GPC
- Results
 - Fly ash analysis
 - Mechanical characterization of GPC
 - Data analysis
- Conclusions

Geopolymers

- Geopolymers are cementitious materials that do not require the presence of OPC to harden or gain strength.
- Geopolymers are formed by a 3d network of Si & Al mineral molecules linked through covalent bonds with oxygen molecules.
- A positive ion must be provided to allow aluminum to become tetravalent.

Geopolymers

- The source of Si & Al for geopolymers can be any mineral (e.g. metakaolin) or by-product (e.g. fly ash)
- The positive ion is usually provided by a hydroxide solution of Na or K, etc.
- Water glass provides the monomers from which the polymeric chains grow.
- In most cases a slightly elevated temperature is required to kick start the geopolymerization reaction

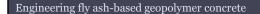
Geopolymerization

Geopolymeric reaction occurs can be divided into three steps:

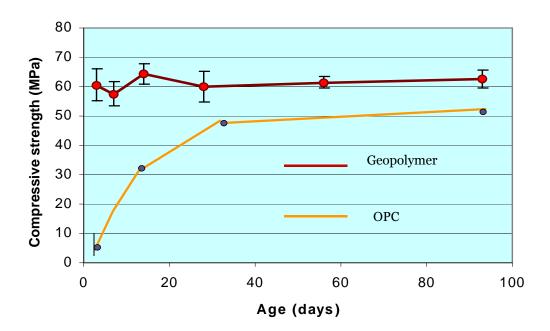
- 1. Dissolution of species Si and Al dissolve in the alkaline media providing monomers.
- 2. Transportation/Initial gelation- Orientation of the precursors takes place.
- 3. Condensation/setting- Hydrolyzed aluminate and silicate species policondensate and harden.

MIXING

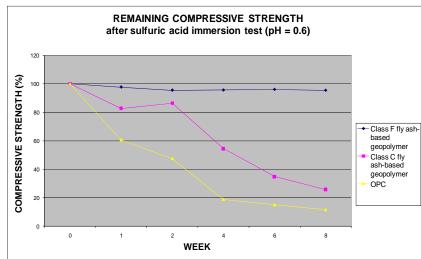
Geopolymer paste can be mixed with the same aggregates used for Portland cement, for its use as mortar or concrete.

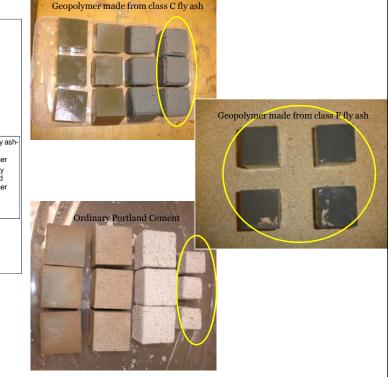


FINE & COARSE AGGREGATES



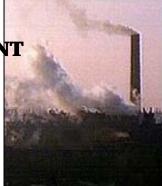
PROPERTIES

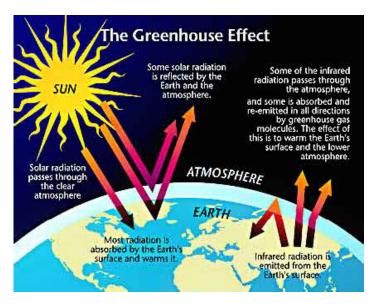

COMPRESSIVE STRENGTH


Typical compressive strength curve of Geopolymer vs. Portland cement. Observe the high early strength of geopolymer (up to 12,000 psi after 3 day of curing).

PROPERTIES

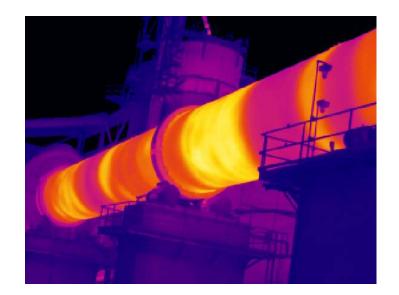
CHEMICAL RESISTANCE


Geopolymer's corrosion resistance to the attack of sulfuric acids is significantly greater than that of Portland cement. It is practically inert to sulfate salts attack.

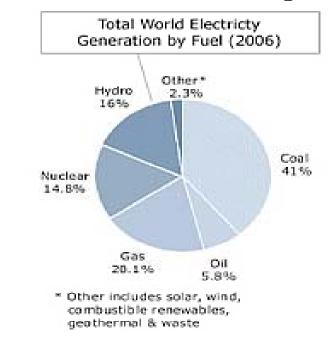

Sustainability

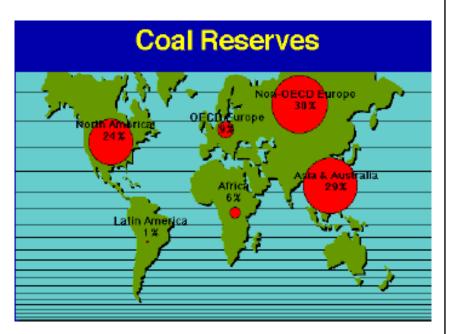
POLLUTION AND ECOLLOGICAL FOOTPRINT

Actual production of Portland cement contributes 13.5 billion tons of CO_2 per year. Approximately 5% of the total global emission of CO₂ to the atmosphere.



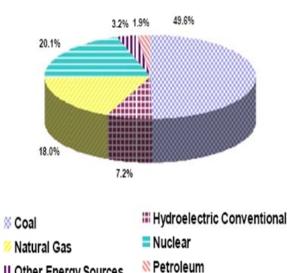
Geopolymer made out of waste materials like fly ash not only have a smaller footprint but help reduce the footprint of other industries namely, coal-fired power plants.

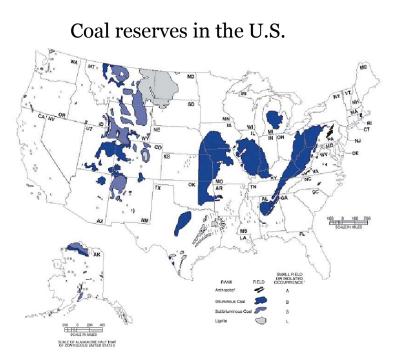

Sustainability


ENERGY CONSUMPTION

- Portland cement production requires heating raw materials over 2550 F
- Fly ash based-geopolymers are a much less energy consuming alternative.

Sustainability

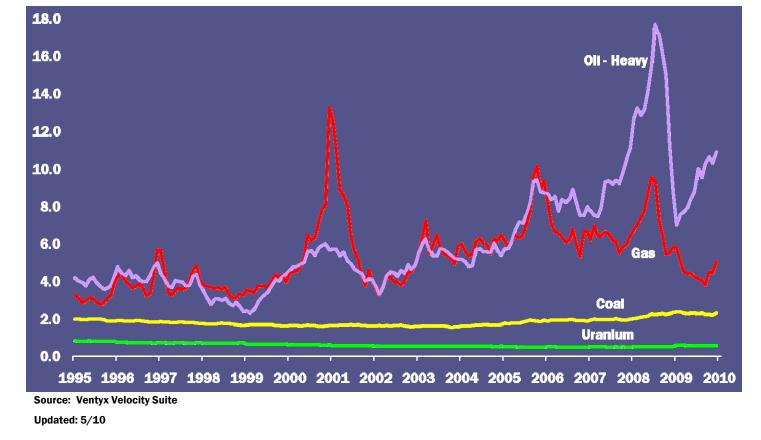

480 Million Tons of fly ash produced in 2001
World wide utilization ranges 20 to 80%



II Other Energy Sources

Sustainability

Energy production sources in the



• 72 million tons of fly ash produced in 2008 • Only 30 million tons were used sending around 42 million tons to the landfills

Sustainability

Monthly Fuel Cost to U.S. Electric Utilities 1995 – 2009, *In 2009 cents per kilowatt-hour*

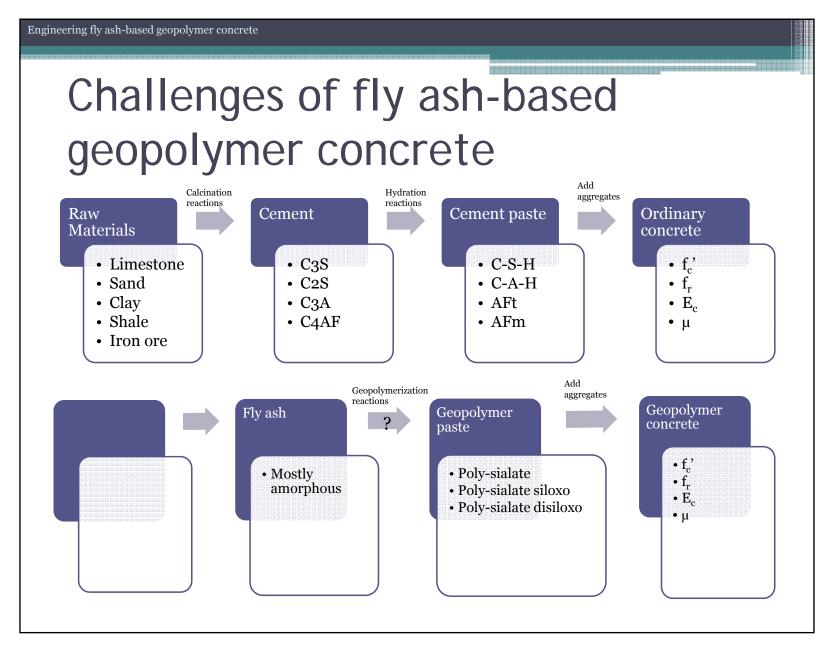
Sustainability potential risks of fly ash storage lagoons

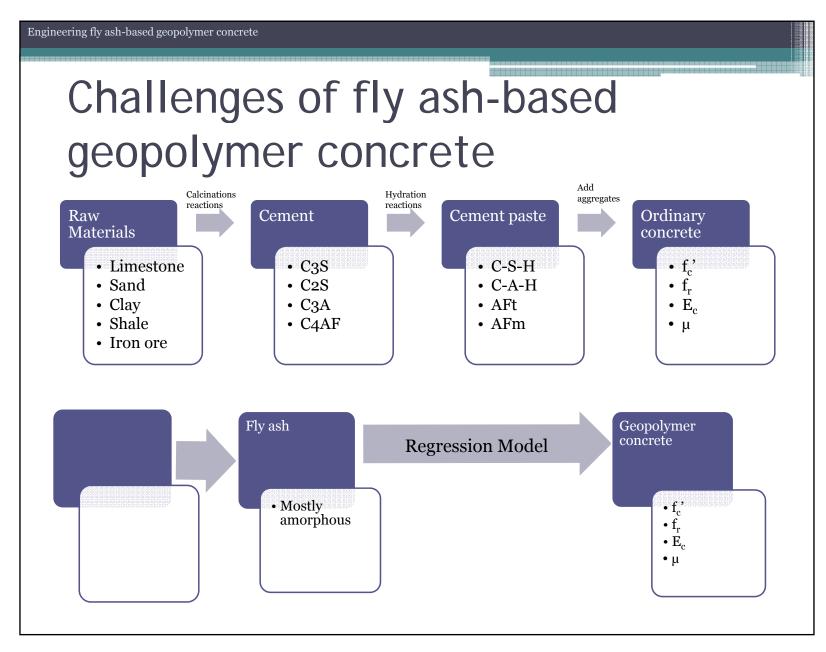
- In December 2008 a TVA's fly ash storage lagoon ruptured in Kingston, TN
- 1.1 billion gal. of fly ash slurry were spilled into the Emory and Clinch Rivers
- 300 acres of the surrounding land were contaminated
- Estimated clean-up costs: 675 to 975 million

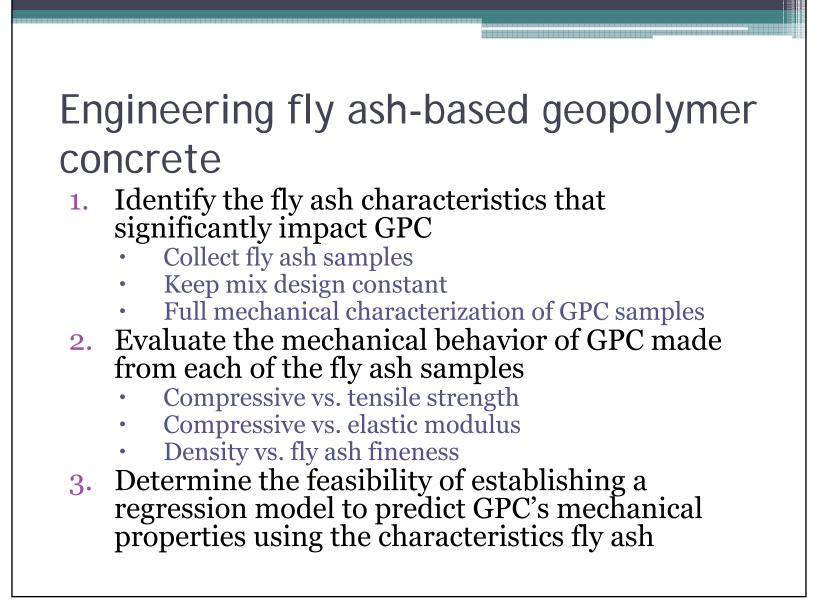
CEM-1955

New Opportunities in the US

- Increasing Cost Of Fly Ash Disposal
 - New regulations proposed by the EPA are expected to tighten fly ash disposal requirements increasing its cost.
- Fly Ash Only For Encapsulated Applications
 - EPA's new regulations may only allow fly ash to be recycled in encapsulated applications.
- Green Construction Boom
 - LEED Certification is aimed at improving performance across all the metrics that matter most: energy savings, water efficiency, <u>CO₂ emissions reduction</u>, improved indoor environmental quality, and stewardship of resources and sensitivity to their impacts.
- Carbon Trading
 - Geopolymer offers the possibility to offset carbon emissions.

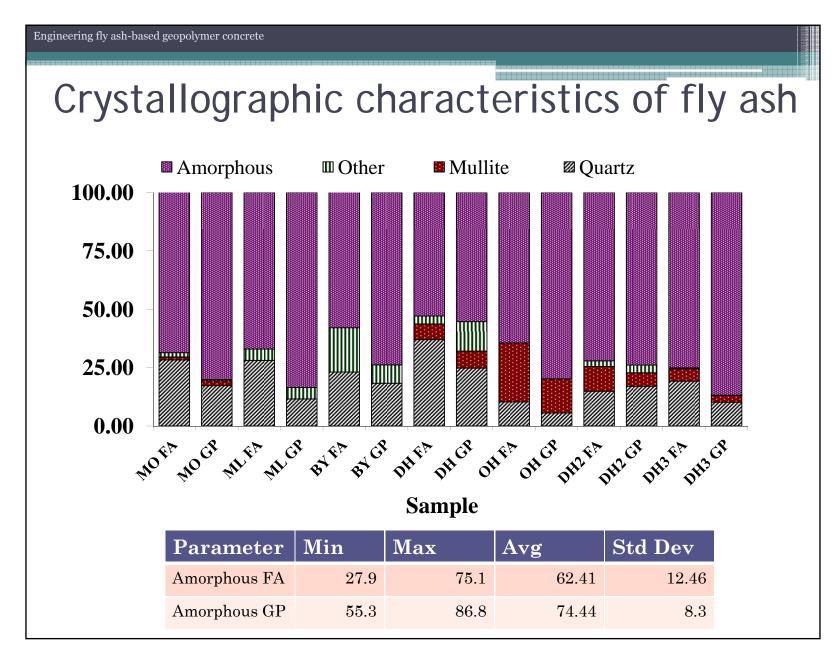


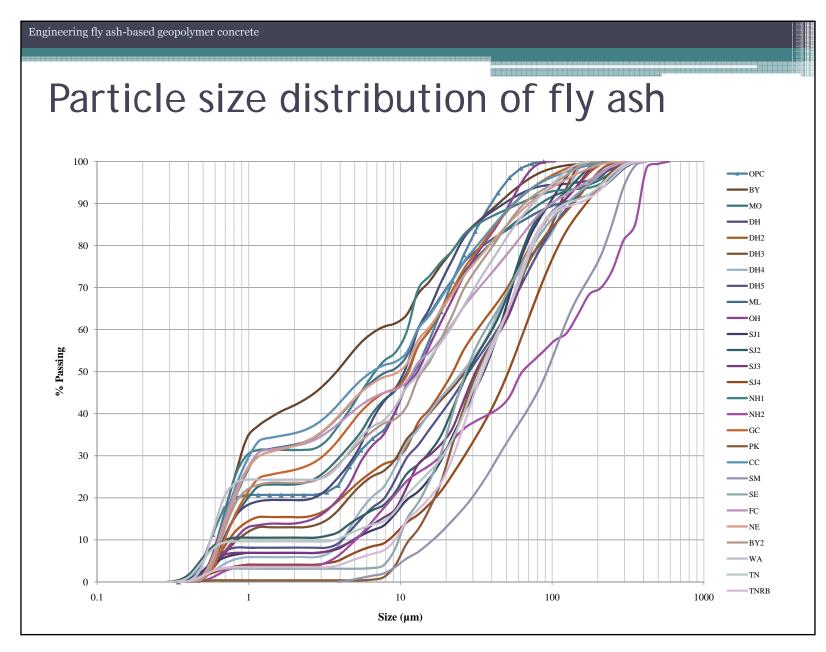



Challenges of fly ash-based geopolymer concrete

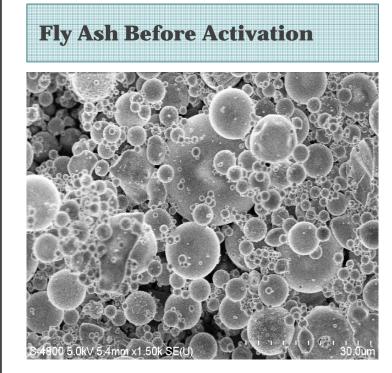
•Fly ash Variability

Component	Bituminous	Subituminous	Lignite
SiO ₂	20-60	40-60	15-45
Al_2O_3	5-35	20-30	10-25
Fe ₂ O ₃	10-40	4-10	4-15
CaO	1-12	5-30	15-40
MgO	0-5	1-6	3-10
SO3	0-4	0-2	0-10
Na ₂ O	0-4	0-2	0-6
K ₂ O	0-3	0-4	0-4
LOI	0-15	0-3	0-5

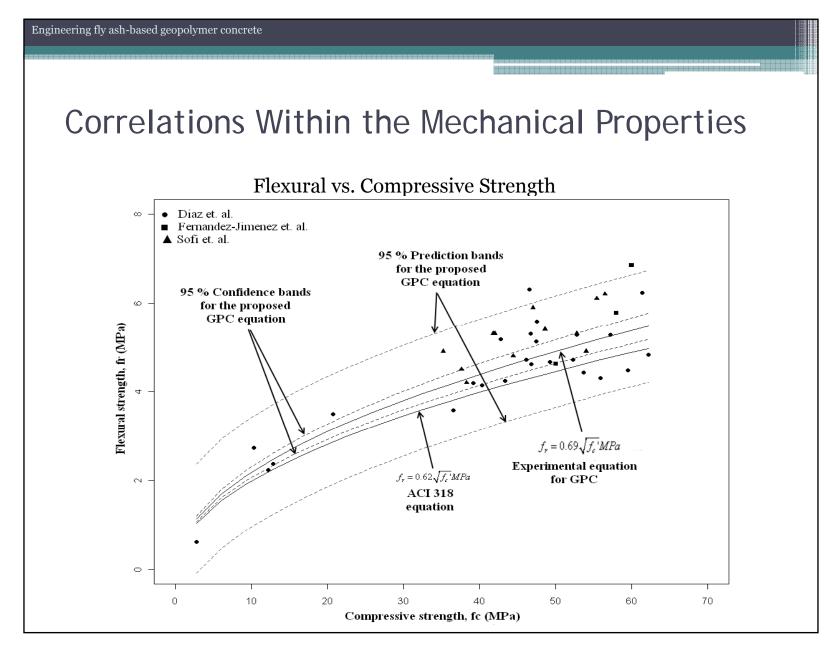

COLLECTION OF FLY ASH SAMPLES


SAMPLE	FLY ASH ORIGINS	LOCATION	ID CODE	CAPACITY (MW)	FLY ASH PRODUCTION PER YEAR (TONS)
1	RODEMACHER PP	BOYCE, LA	BY	963	438,000
2	RODEMACHER PP 2ND BATCH	BOYCE, LA	BY2	1871	1,092,664
3	MONTICELLO PP	MOUNT PLEASANT, TX	MO	1,880	1,097,920
4	DOLET HILLS PP	MANSFIELD, LA	DH		
5	DOLET HILLS PP 2/09/09	MANSFIELD, LA	DH 2		
6	DOLET HILLS PP 3/16/09	MANSFIELD, LA	DH 3	750	438,000
7	DOLET HILLS PP 07/01/09	MANSFIELD, LA	DH 4		
8	DOLET HILLS PP 08/10/09	MANSFIELD, LA	DH 5	-	
9	MARTIN LAKE PP	TATUM, TX	ML	2,250	1,314,000
10	AVON LAKE PP	AVON L., OHIO	OH	745	435,080
11	SAN JUAN PP (LANDFILL)	FARMINGTON, NM	SJLF		
12	SAN JUAN PP UNIT 1	FARMINGTON, NM	SJ1	-	
13	SAN JUAN PP UNIT 2	FARMINGTON, NM	SJ2	1,800	1,051,200
14	SAN JUAN PP UNIT 3	FARMINGTON, NM	SJ3	-	
15	SAN JUAN PP UNIT 4	FARMINGTON, NM	SJ4	-	
16	COUTLAND PAPER MILL	COURTLAND, AL	CL	-	
17	TENNESSE	TENNESSEE	TN		
18	TENNESSE REBURNED	TENNESSEE	TNRB	-	
19	MERRIMACK STATION UNIT 1	BOW, NH	NH1	459	1,097,920
20	MERRIMACK STATION UNIT 2	BOW, NH	NH2	439	1,097,920
21	SAN MIGUEL ELECTRIC COOP.	TILDEN, TX	SM	390	227,760
22	GIBBON'S CREEK PP	BRYAN, TX	GC	454	265,136
23	COLETO CREEK PP	FANIN, TX	CC	600	350,400
24	PIRKEY PP	HALLSVILLE, TX	PK	721	421,064
25	WELSH PP	HALLSVILLE, TX	SE	1,674	977,616
26	FLINT CREEK PP	GENTRY, AR	FC	528	308,352
27	NORTHEASTERN STATION U 3&4	OOLOGAH, OK	NE	946	552,464
28	W.A. PARISH PP	THOMPSON, TX	WA	3,565	1,040,980
	TOTAL				11,108,556

Elemental analysis of fly ash via XRF


ID Code Oxide	BY	BY2	МО	DH	DH 2	DH 3	DH4	DH5	ML	ОН	SJLF	SJ1	SJ2	SJ3	SJ4	CL	TN	TNRB	NH1	NH2	SM	GC	сс	PK
SiO2	37.77	32.41	55.61	58.52	61.01	61.23	62.12	59.32	48.70	55.07	56.60	56.22	56.39	57.11	57.35	37.99	23.48	44.56	40.75	36.18	66.50	39.25	33.02	59.25
AI2O3	19.13	18.40	19.87	20.61	20.06	19.20	19.59	19.72	16.60	28.61	25.68	27.15	27.36	28.18	27.78	17.37	13.15	24.79	22.79	17.70	18.80	21.09	19.82	18.43
SiO2/AI2O3	1.97	1.76	2.80	2.84	3.04	3.19	3.17	3.01	2.93	1.92	2.20	2.07	2.06	2.03	2.06	2.19	1.79	1.80	1.79	2.04	3.54	1.86	1.67	3.21
SiO2+Al2O3	56.90	57.90	75.48	79.13	81.07	80.43	81.71	79.04	65.30	83.68	82.28	83.37	83.75	85.29	85.13	55.36	36.63	69.35	63.54	53.88	85.30	60.34	52.84	77.68
CaO	22.45	28.07	12.93	5.00	5.48	5.64	5.01	6.90	18.72	1.97	5.73	5.43	4.69	5.18	5.57	18.46	2.30	4.39	4.64	2.26	4.91	23.53	26.19	9.23
Fe2O3	7.33	7.17	4.52	9.43	7.00	7.27	6.88	7.22	6.93	6.22	3.92	3.73	3.34	4.00	3.65	3.09	4.72	8.46	17.76	10.59	1.95	4.99	6.75	5.61
MgO	4.81	5.11	2.49	1.86	2.26	2.23	2.18	2.23	3.91	1.08	0.73	0.77	0.75	0.82	0.82	1.44	0.74	1.35	1.23	1.20	0.63	4.45	6.34	3.23
SO3	1.56	2.04	0.49	0.49	0.28	0.29	0.21	0.36	0.85	0.19	0.34	0.22	0.26	0.28	0.18	2.77	0.26	0.16	1.29	0.20	0.22	0.85	1.36	0.35
Na2O	1.80	2.28	0.67	0.52	0.82	1.13	0.88	1.11	0.71	0.38	1.30	1.47	1.50	1.53	1.42	0.22	0.31	0.63	1.33	0.73	2.90	1.47	1.92	0.50
К2О		0.41	0.86		1.27	1.28	1.37	1.27	1.22	2.63	1.00	1.00	0.95	1.05	1.01	3.46	0.93	1.73	2.19	1.59	2.63	0.57	0.35	1.63
TiO2		1.45			1.09	0.97	1.01	1.00	0.97	1.56	0.80	0.93	0.96	1.00	1.01	0.91	0.90	1.67	1.28	1.03	0.89	1.50	1.50	1.21
MnO2		0.03			0.14	0.16	0.16	0.18	0.21	0.02	0.05	0.04	0.03	0.03	0.03	0.54	0.02	0.04	0.03	0.03	0.09	0.02	0.03	0.06
P2O5		1.22			0.08	0.09	0.09	0.10	0.10	0.16	0.13	0.18	0.18	0.21	0.19	0.50	1.01	1.80	0.62	0.43	0.01	1.18	1.52	0.05
SrO		0.35			0.21	0.24	0.20	0.23	0.31	0.08	0.06	0.07	0.07	0.07	0.06	0.17	0.08	0.14	0.25	0.14	0.14	0.36	0.33	0.21
BaO		0.68			0.23	0.22	0.20	0.22	0.30	0.21	0.10	0.10	0.11	0.11	0.09	0.24	0.08	0.13	0.19	0.08	0.12	0.62	0.72	0.21
Moisture content	0.12	0.07	0.03	0.14	0.05	0.04	0.17	0.08	0.12	0.12	0.09	0.04	0.00	0.00	0.01	0.12	0.72	0.05	0.14	0.16	0.02	0.03	0.01	0.03
Loss On Ignition	0.17	0.38	0.23	0.05	0.08	0.06	0.10	0.15	0.49	1.82	3.50	2.69	3.41	0.44	0.83	12.83	52.01	10.14	5.72	27.84	0.26	0.11	0.16	0.04

Parameter	Min	Max	Avg	Sta Div
SiO2+Al2O3	36.63	85.30	71.15	13.93
SiO2/Al2O3	1.79	3.19	2.35	.59
CaO	2.26	28.07	9.78	8.24

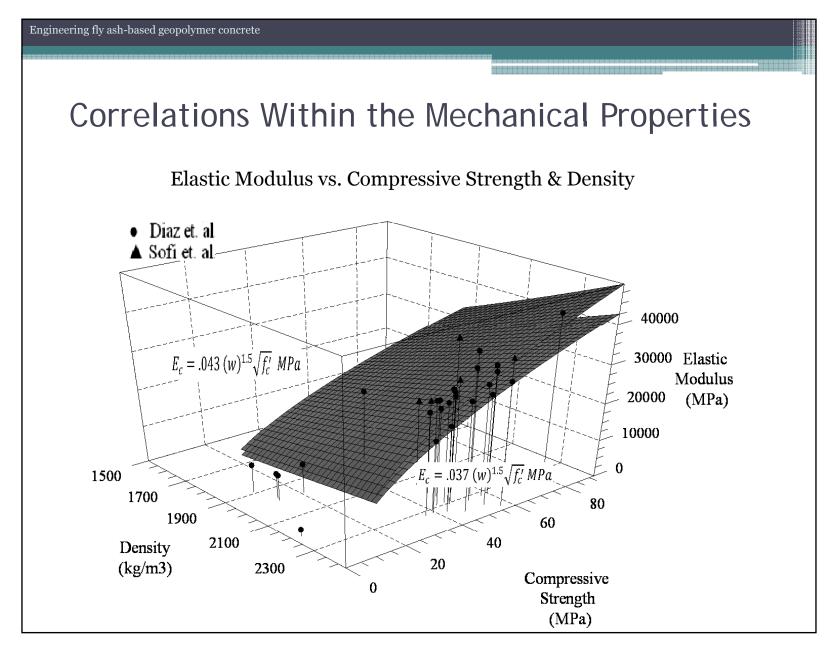


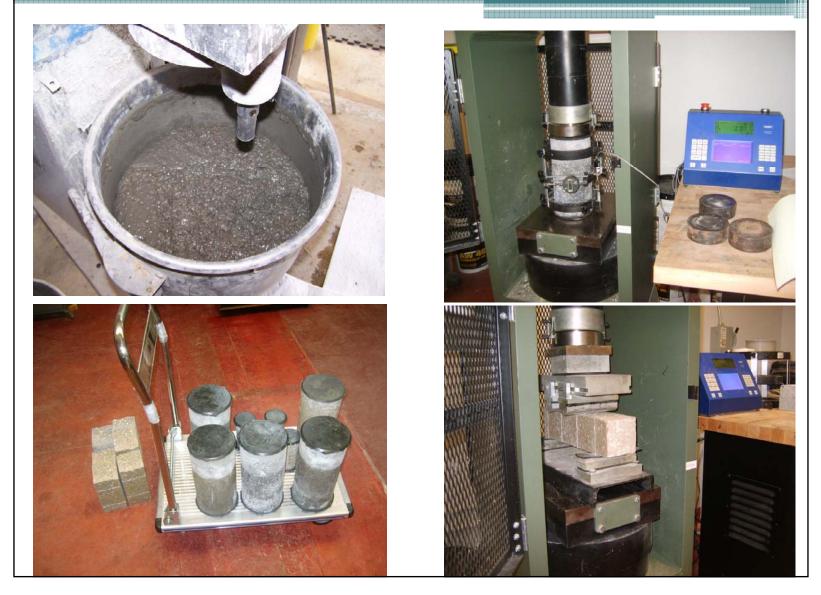
Particle Morphology

Fly Ash After Activation (Geopolymer)

Correlations Within the Mechanical Properties

Elastic Modulus vs. Compressive Strength


• The ACI equation:


 $B_c = 47$ \$ $3\sqrt{f_c} MPa$ was design for normal weight concrete (2300 kg/m³)while the GPC samples ranged from 1890 to 2371 kg/m³

• Therefore the density was included in the regression model:

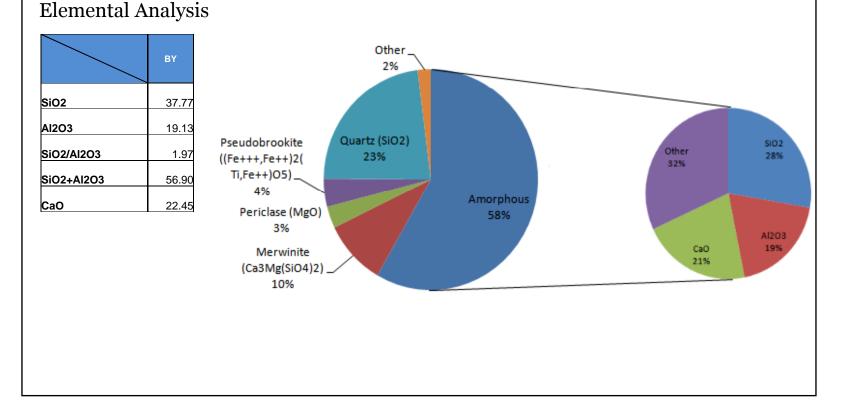
 $B_{c} = .037 (w)^{1.8} \sqrt{f_{c}'} MPa$ Compared to ACI equation:

 $B_{o}=.043\,(w)^{1.3}\sqrt{f_{o}^{I}}\,MPa$

2010 International Concrete Sustainability Conference, Dubai, UAE

Development of a Prediction Model

FLY ASH VARIABLES:


- Reactive Silica
- Reactive Alumina
- Reactive Calcium
- Loss on Ignition
- Fineness
- Specific Surface Area

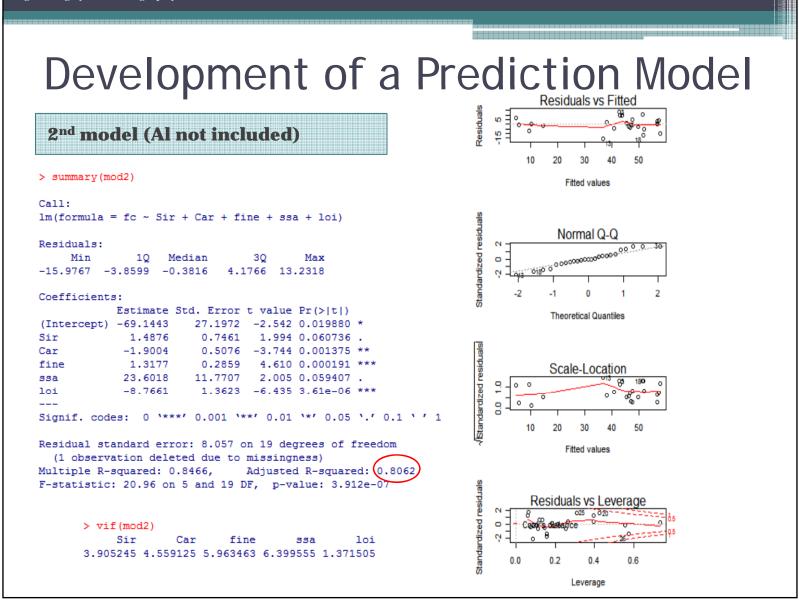
GPC RESPONSE:

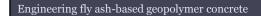
Compressive Strength

Development of a Prediction Model

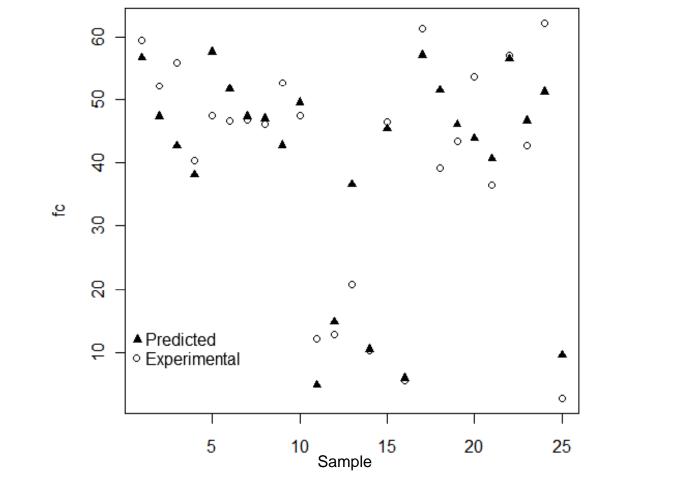
Introduction of Silica, Alumina and Calcium Content to the Model

Development of a Prediction Model


	fine (%>325um)	fc (MPa)	c (MPa) Sir (%) A		Car (%)	ssa (g/cm3)	1oi (%)
BY	83.01	59.50	12.96	10.13	15.21	1.17	0.17
BY2	83.80	52.28	14.05	9.61	18.72	1.02	0.38
MO	68.75	55.89	18.52	10.42	9.23	0.56	0.23
DH	63.50	40.35	16.71	10.38	3.54	0.25	0.05
DH2	66.17	47.55	23.41	9.81	3.92	0.55	0.08
DH3	63.75	46.69	22.70	9.78	4.03	0.48	0.06
DH4	61.66	46.79	22.05	9.91	3.58	0.43	0.10
DH5	62.97	46.11	21.58	10.05	4.93	0.50	0.15
ML	74.24	52.81	16.37	8.79	13.19	0.81	0.49
OH	71.26	47.44	21.25	12.40	1.41	0.50	1.82
SJ1	55.39	12.20	16.92	9.43	3.80	0.28	2.69
SJ2	58.19	12.82	21.90	12.12	3.32	0.46	3.41
SJ3	58.02	20.68	21.92	11.69	3.66	0.32	0.44
SJ4	43.31	10.34	23.02	12.38	3.95	0.13	0.83
NH1	87.50	46.56	18.89	11.54	3.30	1.17	5.72
SM	30.28	5.53	28.05	9.37	3.50	0.10	0.26
GC	84.27	61.38	16.62	11.04	16.62	0.98	0.11
CC	85.68	39.19	14.41	10.31	17.90	0.92	0.16
PK	63.24	43.38	21.53	9.42	6.59	0.54	0.04
SE	67.33	53.70	22.98	9.18	8.32	0.25	0.00
FC	80.91	36.54	12.17	9.19	22.35	1.17	0.00
NE	85.86	57.18	13.99	10.37	19.58	1.23	0.00
WA	81.23	42.81	13.49	8.88	19.23	1.07	0.00
RD	63.10	62.19	25.78	12.47	7.58	0.68	0.31
HW	76.21	2.73	15.60	7.79	19.15	0.69	2.83


Development of a Prediction Model

Stepwise regression


Model with all possible variables

> summary(mod)	> step(mod, direction = "backward", trace=TRUE)								
	<pre>> step(mod, direction = "backward", trace=ikoE) Start: AIC=111.46</pre>								
Call:	fc ~ Sir + Alr + Car + fine + ssa + loi								
lm(formula = fc ~ Sir + Alr + Car + fine + ssa + loi)	$10 \sim 517 + A17 + Ca7 + 11he + 33a + 101$								
$\operatorname{Im}(\operatorname{IOImula} = \operatorname{IC} - \operatorname{SII} + \operatorname{AII} + \operatorname{Cal} + \operatorname{IIIE} + \operatorname{SSa} + \operatorname{IOI})$	Df Sum of Sq RSS AIC								
	- Alr 1 0.05 1233.3 109.46								
Residuals:	<pre>< A11 1 0.05 1233.5 105.46 <none> 1233.2 111.46 - ssa 1 241.56 1474.8 113.94</none></pre>								
Min 1Q Median 3Q Max									
-16.0272 -3.8344 -0.3346 4.1246 13.2167	- Sir 1 252.24 1485.5 114.11								
	- Car 1 773.33 2006.5 121.63								
Coefficients:	- fine 1 1378.98 2612.2 128.23								
Estimate Std. Error t value Pr(> t)	- loi 1 2687.41 3920.6 138.38								
······································	Step: AIC=109.46								
Sir 1.48480 0.77382 1.919 0.071011 .	fc ~ Sir + Car + fine + ssa + loi								
Alr 0.04322 1.66034 0.026 0.979519									
Car -1.89481 0.56399 -3.360 0.003489 **	Df Sum of Sq RSS AIC								
fine 1.31765 0.29370 4.486 0.000285 ***	<none> 1233.3 109.46</none>								
ssa 23.51699 12.52433 1.878 0.076723 .	- Sir 1 258.01 1491.3 112.21								
loi -8.76663 1.39975 -6.263 6.6e-06 ***	- ssa 1 260.97 1494.2 112.26								
	- Car 1 909.86 2143.1 121.28								
	- fine 1 1379.20 2612.5 126.23								
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1	- loi 1 2687.64 3920.9 136.38								
	0-11								
Residual standard error: 8.277 on 18 degrees of freedom	Call: lm(formula = fc ~ Sir + Car + fine + ssa + loi)								
(1 observation deleted due to missingness)	$Im(IOTMUIA - IC \sim SIF + CaF + IIne + SSA + IOI)$								
Multiple R-squared: 0.8466, Adjusted R-squared 0.7954	Coefficients:								
F-statistic: 16.55 on 6 and 18 DF, p-value: 1.927e-06	(Intercept) Sir Car fine ssa loi								
	-69.144 1.488 -1.900 1.318 23.602 -8.766								

Conclusions

- Geopolymer concrete possesses a very similar mechanical behavior to that of ordinary Portland cement concrete.
- Similar or in some cases the same equations given in the ACI building code can be used for the design of GPC structures.
- A model to predict the mechanical properties of GPC based on characteristics inherent to the fly ash is put forward.
- The model is based on the fly ash variables: SiO2, CaO, Loss on ignition, fineness & SSA