

- Concrete's eco-friendly features
- Take full advantage of the green building movement
- Understanding of LEED 2009
- Can benefit the environment and your business
- Certified Concrete Sustainability Specialist

Lesson 1: January 17, 2011 12:00 PM to 2:00 PM eastern (U.S.)

- Introduction
- The Current State of Green Building
- The Environmental Attributes of Concrete
- Follow-up assignments

Lesson 2: January 18, 2011 12:00 PM to 2:00 PM eastern (U.S.)

- LEED 2009 NC Part 1
- Follow-up assignments

Lesson 3: January 19, 2011 12:00 PM to 2:00 PM eastern (U.S.)

- LEED 2009 NC Part 2
- Follow-up assignments

Lesson 4: January 20, 2011 12:00 PM to 2:00 PM eastern (U.S.)

- Strategies for Promoting Sustainable Development
- Follow-up assignments

Certification Exam: Any time prior to February 20, 2011

NRMCA Certified Concrete Sustainability Specialist

- Demonstrate basic knowledge of:
 - Sustainability principles
 - Green building practices
 - The environmental attributes of concrete
 - Concrete's contribution to LEED 2009
 - Strategies for promoting sustainable development
- Requirements:
 - B0% or more on NRMCA Concrete Sustainability Specialist Certification exam

Green movement has a long

history

1824 Jean-Baptiste Fourier: Credited with discovering the "greenhouse effect"

1896 Svante Arrhenius: Formulated the Greenhouse Law : $\Delta F = \alpha \ln(C/C_0 2)$

History of "green" movement

1970 – First Earth day

- 1970 EPA Founded
 - Mission: to protect human health and to safeguard the natural environment
- 1970's Clean Air Act, Safe Drinking Water Act, Clean Water Act, phase out of leaded gas, Ban on DDT, etc.
- 1979 -U.S. National Academy of Science Report

 1985 – The British discover a hole in the ozone layer over Antarctica

Montreal Protocol - 1987

 1988 – The Intergovernmental Panel on Climate Change (IPCC) is created by the United Nations

Antarctic ozone hole at its record size, September 10, 2000. Image credit: NASA

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

History of "green" movement

- 1990 First IPCC report
 - Suggests that emissions resulting from Human activity are substantially increasing the concentrations of greenhouse gases
 - Concludes that the earth has warmed 0.45° C in the last century
- 1995 2nd IPCC Assessment Report
- 2001 3rd IPCC Assessment Report
 - Humans are impacting global warming
 - Global Temps and Sea levels are expected to rise
- 2007 4th IPCC Assessment Report
 - Warming of the climate is unequivocal (Temps 2º-11.5 ° F)
 - Sea levels will probably rise 7.08"-23.22"
 - Most temperature increase is very likely due to human causes of greenhouse gases.

Global Warming? Do YOU believe?

- Warming Temperatures
- Carbon Dioxide Increasing in Atmosphere
- Extreme Weather
- Disappearing Glaciers
- Melting Sea Ice
- Greenland's Ice Sheet Melting
- Tropical Diseases Spreading
- Oceans Warming

Severe Weather

Global warming is REAL and human activity is related.

TO KINA THE ATTACK

IPCC honored with the 2007 Nobel Peace Prize

 CLIMATE CHANGE 2007

 SYNTHESIS REPORT

 Image: Comparison of the synthesis of the synthesynthesis of the synthesis of the synthesyn

The myths about Global Warming

- No Agreement by Scientists
- Global warming is a natural occurrence
- Sea Levels are not rising at an unusual rate
- Some glaciers are melting while others are advancing
- Severe storms are on the decline

Climate Changes

- Sea levels have risen more than 300 feet in 18,000 years (prior to human intervention)
- Current rate of increase is less than the average over the last 18,000

- The glaciers are melting and reforming
- Natural process
- Mt. Kilimanjaro is melting
 - Kenya is cooling!

Storms not caused by global warming

- Decrease in intensity and number of storms since the 1940s
- Even 2005 hurricane season did not reverse the downward trend

Improved Bottom Line

- Energy Savings
- Reduced Liability
- Improved Risk Management
- Increased Value
- Verified Performance
- Increased
 Productivity of
 Occupants

What's Happening NOW!

- Global Economy Pushing Energy Independence
- Everyone is on the Bandwagon
 - Media outlets
 - Government
 - General Public
- Concrete Industry Historic Opportunity

CONCRETE offers it ALL

- Versatility
- Sustainability
- Recyclability
- Energy Efficiency
- Durability

- What is Sustainable Development?
 - Development that meets the needs of the present without compromising the needs of future generations
 - Encompasses shelter, food, social welfare, health issues, and ecology
- What is Green Building?
 - Focuses on the built environment
 - Minimize environmental impact of buildings
 - A subset of sustainable development

The Good

Impact Index

Resource Impact Index		
Concrete	Aggregate Quarrying Limestone Quarrying	1.00 1.50
Steel	Iron Ore Mining	2.25
Wood	Boreal Timber Harvesting Coastal Timber Harvesting	2.50 3.25
	Source: Natural Resources Canada	

Logging for Wood

- Disruption per unit of building material is high
- Renewal takes generations
- Stream damage from landslides is common

Source: Natural Resources Canada

Iron Ore Mining for Steel

- Very deep open pit mining
- Mines are rarely restored
- Duration of disruption may be forever

Source: Natural Resources Canada

Aggregate & Limestone Quarrying

- Closely contained and temporary
- Restored within 1 to 2 years
- Most abundant materials on earth

Source: Natural Resources Canada

The Bad and The Ugly

Aesthetics, Noise and Dust

Carbon Dioxide

- Most materials requires little processing
- Low energy of production
- Manufactured and harvested locally
- Low transportation energy
- Contributes to local economy

The Mix in Ready Mixed Concrete

Does cement manufacturing generate CO₂?

- As with all industrial processes cement generates CO₂
- Made from natural minerals
 - calcium (60%) from limestone
 - silicon (20%)
 - aluminum (10%)
 - □ iron (10%)
- Heated in large kiln to 1500° C
- Converts raw materials to clinker
- CO₂ generated from two sources
 - Fossil fuels in burning process
 - Calcination calcium carbonate broken down to calcium oxide with release of CO₂

Cement and CO₂

- Most common cement is called portland cement
- Contains about 92% to 95% clinker by weight
- Some companies produce blended cements
 - Incorporate industrial byproducts
 - Reduces amount of clinker in the cement
- Mining equipment and transportation emit relatively small amounts of CO₂
- Energy consumption in the U.S.
 - Petroleum refining (6.5%)
 - Steel production at (1.8%)
 - Wood production at (0.5%)
 - Cement manufacturing (0.33%)

- Between 900 and 1100 kg of CO2 emitted for every 1000 kg of portland cement produced
- On average 927 kg of CO₂ emitted for every 1000 kg of portland cement produced
- 50% to 60% is result of calcination
- remaining is result of burning fossil fuels such as coal and natural gas

Global CO₂ Production

- Cement accounts for 5% of the global CO₂
- Global cement production in 2005
 - Total: 2300 million metric tons (Mt)
 - China: 1038 Mt
 - India: 145 Mt
 - United States: 96 Mt
- Global emissions will decrease as countries like China replace old kilns

How much CO₂ embodied in concrete?

- Small percentage embodied in concrete
- Concrete uses 7% and 15% cement by weight
- The average quantity of cement is around 250 kg/m3
- 100 to 300 kg of CO₂ embodied per cubic meter
- That's 5% to 13% of the weight of concrete
- CO₂ reabsorbed into concrete through carbonation
- 33% to 57% of CO₂ emitted from calcination is reabsorbed through carbonation over 100-year life

How does concrete compare to other building materials?

- Concrete has low energy consumption and CO₂ emissions compared to:
 - Steel
 - Wood
 - Asphalt

Concrete vs. Wood Frame

- Thermal mass systems save energy
- Lower CO₂ emissions from building occupancy
- Research study compared energy performance of various concrete wall systems to wood and steel:
 - Concrete systems reduced energy by 17%
 - Stick-frame house must be 2x12 with R-38 insulation to achieve same energy performance as insulated concrete wall comprised of 150 mm of concrete and two layers of 60 mm thick rigid insulation

Compared 5-story office building
Steel frame with light frame exterior walls
Concrete frame with solid concrete exterior walls

Concrete vs. Asphalt Pavements

Annual Savings and Reductions for Major Urban Arterial Highway

	Results based on driving on concrete vs. asphalt pavement		
	Minimum 0.8%	Average 3.85%	Maximum 6.9%
Fuel Savings (liters)	377,000	1,813,000	3,249,000
Dollar Savings (\$)	338,000	1,625,000	2,912,000
CO ₂ Reductions (t)	1,039	5,000	8,950

Concrete vs. Asphalt

- Life cycle analysis on concrete and asphalt roadways
- Compared embodied energy and global warming potential for construction and maintenance over a 50-year life cycle
- For a high volume highway
 - Asphalt pavement required 3 times more energy than concrete pavement
 - Asphalt generated global warming potential of 738 t/km of CO₂ equivalents compared to 674 t/km for concrete

Driving cars and trucks Industrial operations Heating and cooling homes Heating and cooling buildings

- Heating, air conditioning, and appliances generate most of the CO₂ throughout a structure's lifetime
- 100-year life-cycle of home
 - 98% CO₂ emissions from the use of natural gas appliances
 - a 2% from manufacturing and construction

What is the cement industry doing?

- 33% reduction in CO₂ since 1972
- Additional 10% reduction by 2020 from 1990 levels
- Limestone additions
 - Saves 11.8 Trillion Btus
 - Eliminates 2.5 million tons of CO₂
- Reduce waste by 60%

Recycled Industrial Byproducts

- Uses of industrial byproducts
 - Fly ash
 - Blast furnace slag
 - Silica fume
- Supplement a portion cement
- Otherwise end up in landfills
- Called supplementary cementitious materials (SCMs)
- Improves strength and durability
- Reduces CO₂ embodied in concrete
 - Typical values 15% to 40%
 - □ As much as 70%

Environmental Best Practices

- Reuse and recycling of waste from concrete manufacture
 - Wash water
 - Returned concrete
 - Industrial waste water
 - Foundry sands
 - Glass and other
- Materials would otherwise landfilled

Conclusion

- Concrete industry dedicated to continuous environmental improvement
- Through process and product innovation
- Performs well when compared to other building materials
- However, there is always room for improvement
- CO₂ produced is relatively small
- One of the lowest carbon footprints

2010 International Concrete Sustainability Conference, Dubai, UAE

Concrete Construction

- Made specifically for each order
- Little to no waste is generated
- Short transport
- No shipping carton or wrapping
- Leftovers
 - landscaping blocks
 - Traffic barriers

2010 International Concrete Sustainability Conference, Dubai, UAE

The Good

- High Performance Envelopes
 - Insulation on the outside of wall or roof
 - Mass in contact with interior space
 - Superior building envelope

Thermal Mass

- Increase thermal lag
 - Off peak demand
 - Lower energy costs
- Lower peak energy
 - Smaller, more efficient HVAC equipment
- Reduce temperature swings
 - Less heating and cooling energy required

High Performance Wall Systems

Passive Solar Design

- Daylighting
 - Reduces lighting requirements
 - Heat spaces in winter months
- Solar Shades
 - Reduces solar gain in summer
 - Reflect natural light deep into interior
- Natural Ventilation
 - Provides cooling in summer

Energy Standards

- Thermal mass addressed in building codes
- Buildings
 ASUBAE
 - ASHRAE 90.1
- Low-rise residential
 - ASHRAE 90.2
- One- and two-family
 - ICC International Energy Conservation Code

- Residential zones are 3° warmer
- Downtown areas are 7° warmer
- Due to dark-colored roofing and pavement

Source: Lawrence Berkeley National Laboratory

2010 International Concrete Sustainability Conference, Dubai, UAE

Cool Communities

- Use light colored roofing and cladding
- Use light colored pavements
- Landscape shading
- Reduce air temperatures by 5°
- Reduce air conditioning by 18%

Roofing and Cladding

- Concrete roofing and cladding
 - Light colored
 - Highly reflective
- Research shows 40% reduction in cooling energy

Pavement and Landscaping

- Concrete pavement and landscaping
- Article in MIT Technology Review
 - "...blacktopping should be discontinued..."
 - Use light-colored pavements
 - Concrete costs slightly more but has a lower life cycle cost

Reduced Lighting Requirements

 30% fewer fixtures can produce the same level of lighting on concrete compared to asphalt

Source: Road Surface's Reflectance Influences Lighting Design" RP269.01P, R. E. Stark, Portland Cement Association, April 1986.

Stormwater Management

- Pervious Concrete
 - 15-25% voids
 - Rainwater percolates through the slab
 - Minimizes runoff to surrounding streams and lakes
 - Functions like retention basins
 - Recharges groundwater supplies

Indoor Air Quality

Building Material	VOC Emission (mg/m³h)	
Vinyl flooring	2.3	
Particle board	2.0	
Plywood	1.0	
Acrylic Latex Paint	0.43	
Linoleum	0.22	
Carpet	0.080	
Gypsum board	0.026	
Concrete	0.003	
Concrete	0.003	

Source: University of Western Ontario

- Use exposed concrete:
 - Decorative floors
 - Textured walls
 - Exposed ceiling

Durability and Versatility

- Most widely used building material
- Extremely durable
 - Doesn't rot
 - Doesn't rust
 - Doesn't burn
- Low maintenance
- 2000 year track record of performance

The Good

- Committed to continuous environmental improvement
- P2P Initiative (Prescriptive to Performance Specifications for Concrete)
- The P2P Initiative removes limits on materials
- Allows producers to meet performance requirements
- Minimize environmental impact
Supplementary Cementitious Materials

Fly ash

- From coal-fired electrical power plants
- Blast furnace slag
 - From steel manufacturing
- Silica Fume
 - From silicone manufacturing

Specifying SCMs

- Concrete:
 - Reference ASTM C 94
 - Permits the use of SCMs
- Fly ash:
 - Reference ASTM C 618
 - Replace from 5 to 65 percent
- Blast furnace slag:
 - Reference ASTM C 989
 - Replace from 20 to 70 percent
- Silica fume:
 - Reference ASTM C 1240
 - Replace from 5 to 12 percent,

Key to high performance

- High Performance
 - Improves durability
 - Increases strength
 - Improves constructability
- Environmental Benefits
 - Reduces waste
 - Reduces raw material extraction
 - Reduces energy of production
 - Reduces CO₂

Recycled concrete

- Fills and bases
- Roadways and parking areas
- Driveways and sidewalks
- Shoulders, curbs, gutters

- Landscaping features
- Foundations
- Some Concrete Structures

Summary

Concrete Feature	Environmental Benefit
Most ingredients require little processing	Minimizes energy of production
Most materials harvested and manufactured locally	Minimizes transportation energy
Building systems combine insulation and thermal mass	Homes and buildings more energy efficient
Long service life	Minimizes reconstruction, repair and maintenance
Pavement and exterior cladding are light in color	Minimizes urban heat island effect
Incorporates recycled industrial byproducts	Reduces the energy required for manufacturing
Absorbs CO ₂ throughout its lifetime through carbonation	Reduces carbon footprint

NRMCA Course Schedule

- Design of Concrete Pavements Online Course
 - □ January 10-14, 3:30 5:00 pm
- Concrete's Role in Sustainable Development Online
 January 17-20, 12:00-2:00 pm eastern
- Building Green with Concrete Online
 - □ February 14-18, 12:00 2:00 pm eastern
- Pervious Concrete: A Stormwater Solution Online
 February 28 March 3, 3:00 4:30 pm eastern
- Life Cycle Assessment of Concrete Structures Online
 March 7-10, 12:00 1:30 pm eastern
- LEED Green Associate Exam Study Course Online
 - □ April 4, 8, 11, 15, 18, 22, 25, 29, May 2, 6, 9, 13, 16, 20, 23, 27
 - □ 12:00 2:00 eastern
- 2011 International Concrete Sustainability Conference
 August 9-11, Boston

Feel free to contact me with questions or comments at:

Lionel Lemay, PE, SE, LEED AP Sr. VP, Sustainable Development NRMCA Llemay@nrmca.org (847) 918-7101

2010 International Concrete Sustainability Conference, Dubai, UAE