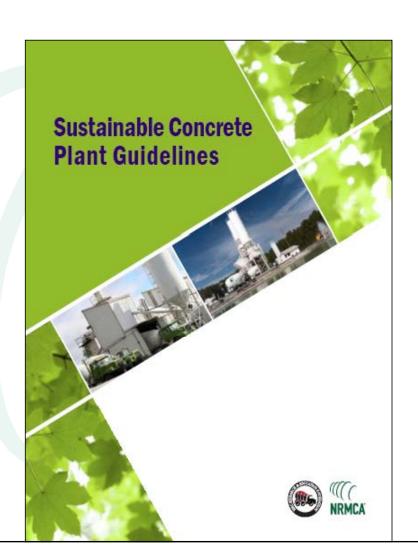
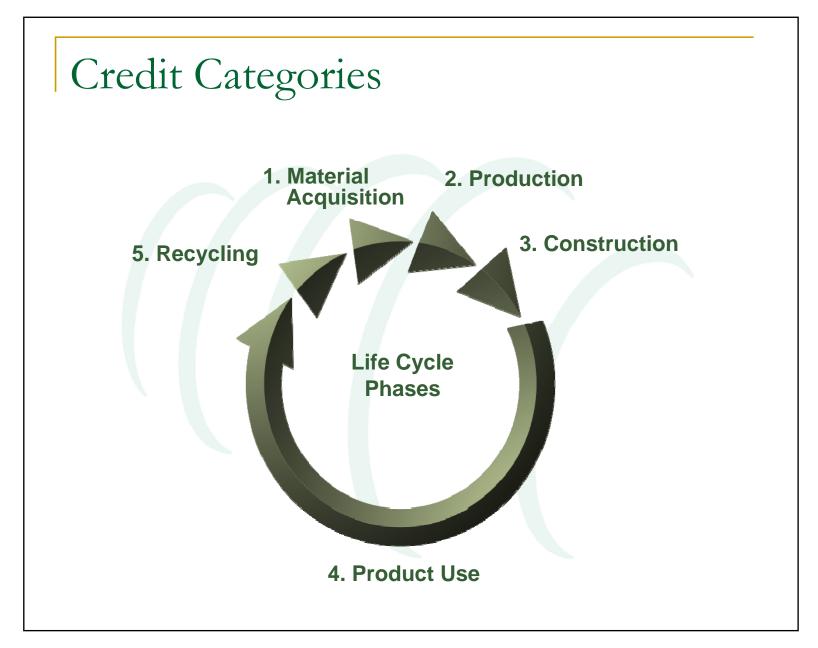
Sustainable Concrete Plant Certification


Lionel Lemay, PE, SE, LEED AP Sr. VP, Sustainable Development



Sustainable Concrete Plant

Guidelines

- Voluntary program
- Provides guidance to producers
- Measures concrete plant sustainability
- Verifies implementation
- Provides recognition
- Applicable Worldwide

Impact Categories

Embodied Energy

Carbon Footprint

Water Use

Waste

Recycled Content

Social Concerns and Human Health

Sustainability Levels

Platinum

Gold

Silver

Bronze

80-100 points

60-79 points

40-59 points

20-39 points

Sustainability Credits

Category	Points
Prerequisites	0
Material Acquisition	16
Production	52
Construction	13
Product Use	6
Recycling	8
Additional Points	5
Total Points	100

Prerequisites	
Prerequisite 1: Comply with federal, state, and local environmental regulations	0
Prerequisite 2: Environmental Management System (EMS) implemented: NRMCA Green-Star, ISO 14001	0
Prerequisite 3: Energy audit by independent party or regional utility	0
Prerequisite 4: Indicate measures taken by plant to mitigate, control, or contain environmental hazards	0

1. Material Acquisition	
Credit 1.1: Recycled Aggregate	4
Credit 1.2: Optimized Portland Cement Use	6
Credit 1.3: Materials Transportation Analysis	4
Credit 1.4: Sustainable Purchasing Plan	2

2. Production	
Credit 2.1: Process Dust Emissions Control	3
Credit 2.2: Fugitive Dust Emissions Suppression	3
Credit 2.3: Reduction of Fresh Water Use in Plant Operations	4
Credit 2.4: Reduction of Fresh Water Use in Batching	3
Credit 2.5: Process Water Collection and Treatment	3
Credit 2.6: Stormwater Management	4
Credit 2.7: Proper Storage of Chemical and Petroleum Products	2
Credit 2.8: Secondary Containment of Chemical and Petroleum Products	2

2. Production (cont'd) Credit 2.9: Employee Training Plan & Emergency **Response Procedures** Credit 2.10: Reduced Carbon Footprint 6 Credit 2.11: Reduced Annual Operating Energy Credit 2.12: Renewable Electricity Use Credit 2.13: Noise control Credit 2.14: Employee Transportation Credit 2.15: Biodiversity Credit 2.16: Worker Safety 3

3. Construction Credit 3.1: Fuel Efficiency Improvement Credit 3.2: Fleet Emissions Reduction Credit 3.3: Driver Training Credit 3.4: Green Building Products

- 1. Pervious concrete.
- 2. Self consolidating concrete (SCC).
- 3. Flowable fill.
- 4. Insulated concrete forms (ICFs), insulated tilt-up walls or insulated removable forms.
- 5. Using "cool" pavements with solar reflectivity index greater than 29.
- 6. Using concrete to support green roofs (vegetated roofs).
- 7. High early strength concrete, greater than 4,000 psi at 72 hours...
- 8. High strength concrete, greater than 8,000 psi.

4. Product Use Credit 4.1: Green Building Education for Staff Credit 4.2: Green Building Education for Specifiers Credit 4.3: Sustainability Advocacy

5. Material Reuse & Recycling	
Credit 5.1: Excess Concrete Reduction	3
Credit 5.2: Diversion of Returned Concrete from Disposal	
Credit 5.3: Other Recycling Initiatives	2

6. Additional Points

Credit 6.1: Additional Points

5

- 1. Exemplary performance in an existing Guideline credit.
- 2. Evaluate 50% of mix designs to lower environmental footprint.
- 3. Sustainable landscaping, only captured rainwater for irrigation.
- 4. R&D to develop innovative sustainable concrete products.
- 5. Organized community involvement.
- 6. Achieving recognition for sustainable practices.
- 7. Maintaining quality standards NRMCA Certified Production Facility certification.
- 8. Other innovative sustainability strategies.

Metrics and Documentation

- Equations
- Worksheets
- Carbon Footprint Calculator (Partial LCA)

Credit 1.1 Recycled Aggregate Credit

$$recycled aggregate (\%) = \frac{recycled aggregate used (t)}{total aggregate used (t)} \times 100$$

≥ 2% recycled aggregate	1 point
≥ 4% recycled aggregate	+1 point
≥ 6% recycled aggregate	+1 point
≥ 8% recycled aggregate	+1 point

Credit 2.1: Process Dust Emissions Control

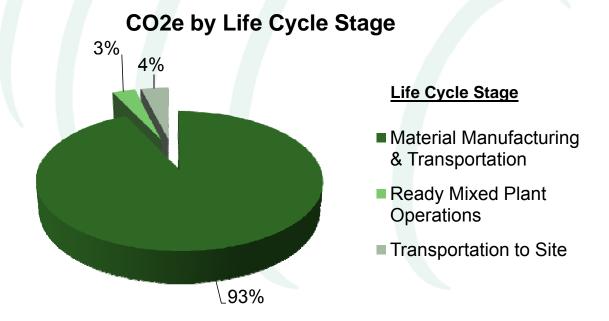
Complete Process Emissions Worksheet

≥ 50% weighted process emission controls	1 point
≥ 75% weighted process emission controls	+1 point
≥ 90% weighted process emission controls	+1 points

Process Emissions Worksheet

Point source emissions		weight
Cement delivery to silo*		
Silo top baghouse or silo vented to central vacuum collector system	No	5%
Silo equipped with overfill warning system	No	15%
Silo equipped with high pressure protection system (pinch valve/alarm)	No	5%
SCM delivery to silo*		
Silo top baghouse or silo vented to central vacuum collector system	No	5%
Silo equipped with overfill warning system	No	15%
Silo equipped with high pressure protection system (pinch valve/alarm)	No	5%
Cement/SCM weigh batchers		
Weigh batcher vented to batcher filter vent or vented to central dust collector		
(direct or indirect)	No	5%
Fines collected in the dust collectors are recycled	No	5%
Coarse and fine aggregate transfer to conveyor		
Transfer underground or transfer point enclosed, or conveyor covered	No	5%
Coarse and fine aggregate transfer to elevated storage		
Plant enclosed or transfer point enclosed	No	5%
Truck loading hopper		
Hopper is surrounded (3 sides) by shroud and is vented to a central dust collector	No	20%
Hopper is equipped with a telescopic boot	No	5%
Spray bar used (in lieu of central dust collector). If central dust collector is		
present, please mark this "Yes".	No	5%
CONTROLLED PROCESS EMISSION SOURCES	0.00%	

Credit 2.10 Reduced Carbon Footprint


$$CO2e (\% below baseltne) = \frac{513 - plant CO2e footprint \left(\frac{kg CO2e}{m^3}\right)}{513} \times 100$$

Annual CO2e/cy ≥ 5% below baseline 1 pc	
Annual CO2e/cy ≥ 10% below baseline	+1 point
Annual CO2e/cy ≥ 15% below baseline	+1 point
Annual CO2e/cy ≥ 20% below baseline	+1 point
Annual CO2e/cy ≥ 25% below baseline	+1 point
Annual CO2e/cy ≥ 30% below baseline	+1 point

Carbon Footprint Calculator

- Input Data
 - Material Purchases
 - Material Transportation
 - Plant Energy Use
 - Fleet Fuel Use
- Results
 - □ Plant Annual Carbon Footprint (total and per m³)
 - Plant Annual Energy Use (total and per m³)

SI Units	
Annual Total Per Unit	
17,292 metric tons	452.35 kg/m3
136,942,629 MJ	3,582.28 MJ/m3

CO2e (% below baseline) =
$$\frac{513 - 452.35}{513} \times 100$$

$$CO2e$$
 (% below baseline) = 11.89%

Annual CO2e/cy ≥ 5% below baseline	1 point
Annual CO2e/cy ≥ 10% below baseline	+1 point
Annual CO2e/cy ≥ 15% below baseline	+1 point
Annual CO2e/cy ≥ 20% below baseline	+1 point
Annual CO2e/cy ≥ 25% below baseline	+1 point
Annual CO2e/cy ≥ 30% below baseline	+1 point

This plant would receive 2 points for this credit

Certification Process

- Plant rater (company personnel or consultant) uses guidelines to rate plant
- Collects documentation to demonstrate compliance with credit requirements
- Submits form, claimed rating, documentation and fee to NRMCA
- NRMCA reviews documentation for proper formatting (and returns to submitter for revision)
- Plant personnel corrects submittal and resubmits to NRMCA

Certification Process (cont'd)

- NRMCA sends submittal to auditor
- Auditor reviews documentation for compliance with guidelines (adjusts rating and provides comments)
- NRMCA returns audit to plant rater and resubmits with corrected documentation
- Auditor reviews resubmitted documentation and finalizes the plant rating
- NRMCA awards appropriate certification level

Auditor Qualifications

Option 1:

- Registered Professional Engineer
- NRMCA Certified Environmental Professional
- Complete 2-hour seminar certification program

Option 2:

- 4-year degree in engineering, construction or science
- 2 years experience in environmental management
- NRMCA Certified Environmental Professional
- Complete 2-hour seminar certification program

Option 3:

- 5 years experience in environmental management
- NRMCA Certified Environmental Professional
- Complete 2-hour seminar certification program

Pilot Program

Rabih Fakih, Managing Director Grey Matters Consultancy

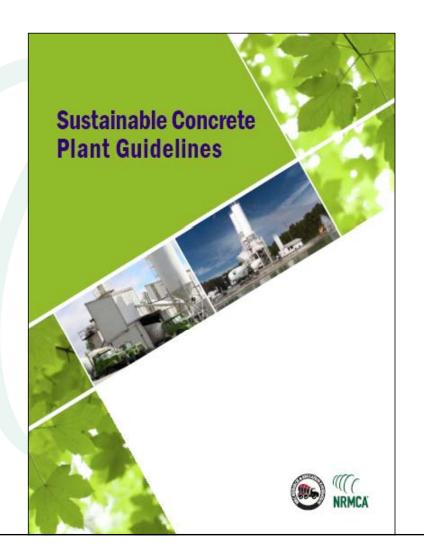
Purpose

- Test the guidelines
- Establish if requirements are reasonable
- Explore documentation requirements
- Test third party auditing process

Pilot Results

- 15 plants participated
 - □ 13 from U.S.
 - 2 from Canada
 - □ 1 from UAE
- 2 auditors participated
 - One from U.S.A. (Doug Ruhlin)
 - One from UAE (Rabih Fakih)

Pilot Plants


Certification Level	Number of Plants
Not certified (0-19)	0
Bronze (20-39)	5
Silver (40-59)	10
Gold (60-79)	0
Platinum (80-100)	0

Observations

- Documentation requirements must be more specific
- Some credit criteria will need to be adjusted
- Formalize the certification process
- Establish auditor criteria

Next Steps

- Finalize certification process
- Establish auditor criteria
- Launch program in early 2011
- Applicable worldwide

