CO₂ Utilization in Concrete Production

Yixin Shao and Chad Logan

Department of Civil Engineering

McGill University

Montreal, Quebec, Canada

CO₂ Emission and Its Utilization

 Utilization of CO₂ in concrete production to reduce emission and improve performance

Use of CO₂ as Curing Agent

- Weathering carbonation at late age:
 - Ca(OH)₂+CO₂ → CaCO₃+H₂O
 - $3CaO \cdot 2SiO_2 \cdot 3H_2O + 3CO_2 \rightarrow 3CaCO_3 + 2SiO_2 \cdot 3H_2O$
 - CO₂ uptake is difficult to quantify
 - Passive carbonation can be detrimental
- Carbonation curing at early age (Young, 1974):
 - $CO_2 + H_2O \rightarrow H_2CO_3$
 - $C_3S + 1.2H_2CO_3 \rightarrow C_{1.4}SH_{0.6} + 1.2CaCO_3 + 0.6H_2O$
 - CO₂ uptake can be estimated
 - Performance can be improved

Benefits of Early Carbonation

Technical:

- Increased early age strength
- Accelerated production
- Reduced calcium hydroxide

Environmental:

- Permanent storage of CO₂ into a form of stable calcium carbonate
- Carbon credit in a cap and trade system

How Much CO₂ Can Be taken?

- The theoretical maximum of CO₂ uptake by Portland cement :
 - CO_2 (wt%) = 0.785 CaO + 1.09 MgO + 1.42 Na_2O + 0.935 K_2O
- At 100% carbonation, CaO is totally reacted with CO₂ to form CaCO₃ and carbon dioxide uptake can reach 50 wt%.

	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO
Portland cement	62.9	20.7	3.7	3.0	4.2

Objectives

- To quantify carbon uptake capacities in dry mix concretes
 - Products: blocks, pavers, pipes, piles, hollow-core slabs, etc.
- To evaluate performance of carbonated products at different ages
- To perform cost analysis between carbon dioxide curing and steam curing

Mixture Proportion

		C	W/C	S/C	CA/C	Preset,	Carbonation
						hr	time, hr
B1	Cement paste	1	0.15	0	0	0	2
B2	Cement paste	1	0.15	0	0	17	2
В3	Cement paste	1	0.15	0	0	0	18
B4	Cement paste	1	0.15	0	0	17	18
B5	Concrete	1	0.26	1.3	2.6	0	2
B6	Concrete	1	0.26	1.3	2.6	17	2
B 7	Concrete	1	0.26	1.3	2.6	0	18
B8	Concrete	1	0.26	1.3	2.6	17	18

Early carbonation parameters:

- Recovered CO₂ (99%) at gas pressure of 1.5 bar.
- Sample size: 76x127x30 mm & 25x25x254 mm

Carbon Uptake by Cement Binder

(1 - CO₂ tank, 2 - valve, 3 - heater, 4 - regulator, 5 - pressure gauge, 6 - bar sample, 7 - pressure vessel, 8 - LVDT assembly, 9 - data acquisition system, 10 - thermocouple, 11 - discharge, 12 - vacuum pump.)

1) Infrared (IR) based carbon analyzer method

$$CO_2 \ uptake(\%) = \frac{(Mass)_{CO2@800C}}{(Mass)_{dry \ binder}}$$

2) Mass gain method

$$CO_2 \ uptake(\%) = \frac{(Mass)_{aft,CO2} - (Mass)_{bef,CO2}}{(Mass)_{dry \ binder}}$$

Carbon Uptake

Cement paste:

	T, <u>°C</u>	WL,%	Uptake	T, <u>°C</u>	WL,%	Uptake,	CO2 content, % (slab)		
	(bar)	(bar)	%, (bar)	(slab)	(slab)	%, (slab)	surface	core	Ave.
B1	51.6	13.99	10.65	89.4	20.76	10.83	10.21	8.83	9.52
B2	46.6	5.71	9.58	77.0	11.87	10.85	9.52	8.95	9.24
B3	47.9	14.41	13.78	97.3	22.41	12.68	11.70	10.08	10.89
B4	41.4	3.19	13.29	86.2	13.73	13.22	13.46	12.04	12.75

Note: T: peak temperature; WL: water loss; Uptake: CO2 uptake based on Eq 1; CO2 content: measured by CO2 analyzer; Bar: measured from bar sample; Slab: measured from slab samples.

Concrete

	T, °C	WL,%	Uptake,	T, °C	WL,%	Uptake,	CO ₂ co	ntent, 9	% (slab)
	(bar)	(bar)	% (bar)	(slab)	(slab)	% (slab)	Carb.	Hyd.	Diff.
B5	40.2	7.88	9.70	59.9	16.49	10.15	15.22	7.22	8.0
B6	41.0	0.65	7.38	43.1	6.67	8.37	16.10	8.36	7.74
B7	41.4	6.31	12.98	56.9	17.99	15.02	20.39	7.52	12.87
B8	37.6	0.60	11.75	41.7	5.93	10.46	20.11	9.25	10.86

Note: T: peak temperature; WL: water loss; Uptake: CO2 uptake based on Eq 1; CO2 content: measured by CO2 analyzer; Bar: measured from bar sample; Slab: measured from slab samples; Carb: carbonated; Hyd: hydrated; Diff: difference (CO2 content due to carbonation).

SEM of Carbonated Concrete

After 7-day subsequent hydration

Effect of Subsequent Hydration

Phenolphthalein tests of carbonated cement:

After 2 hours, uptake=13%

After 24 hours in sealed bag

After 28 days in sealed bag

Atmospheric Weathering Carbonation Test (AWCT)

1 - gas tank 6 - AWCT chamber 11 - humidifier
2 - heater 7 - shelves 12 - pump
3 - regulator 8 - samples 13 - desiccator
4 - valve 9 - fan 14 - CO2 analyzer
5 - pressure gauge 10 - humidity probe 15 - humidity controller

Condition: 50%CO2, 60% RH, 25 °C, 7-day curing.

AWCT Shrinkage of Carbonated and Hydrated Cement

Freeze-Thaw Resistance of Concrete

CSA A231.2-95 for 28-day concrete pavers:

- •16-hr freezing at -15 C in 3% sodium chloride solution
- •8-hr thawing at 22 C;
- •Mass loss is calculated at10, 25 and 50 cycles.

		Cumulative Mass Loss,		
		g/m ²		
Sample	Carbonation Treatment	10 Cycles	25 Cycles	
SC	22 h Preset + 22 h CO2	218	1425	
SH	Hydration	1762	10601	

Carbonated, after 25 cycles

Hydrated, after 25 cycles

Freeze-Thaw Resistance of Concrete Pavers

		CO2	24-hr	Cumulative Mass Loss,	
	Carbonation	uptake, %	Strength,	g/m^2	
Sample	Treatment		MPa	10 Cycles	25 Cycles
P1C	2 hr Preset + 4 hr	3.4	31	2.7	37.6
P2C	19 hr Preset + 5 hr	7.4	46	2.2	5.4
P3H	Hydration	0	35	26.9	328.0

Carbonated

Hydrated

Cost Analysis

- Steam curing
 - Atmospheric steam curing: 0.59 GJ/m³=164 kWH/m³
 - Assuming \$0.1/kWH, 1m³ concrete costs \$16.4.
- Carbon dioxide curing
 - Assuming density = 2400kg/m³, cement content = 20%, and carbon uptake = 10% of cement
 - One cubic meter concrete needs 48 kg CO₂
 - If cement producer captures CO₂ at a price of \$50/t and sells it to concrete producer at \$80/t, 1m³ concrete costs \$3.84.

Carbonation of Pervious Concrete

Mix Design	Unit	Unit/m3
Coarse Aggregate	kg	1498.00
Fine Aggregate	kg	104.00
Cement	kg	343.00
Silica Fume		
Water	kg	93.00
Air Entraining Agent	ml	
Super Plasticizer	ml	
w/c		0.2711
Paste/Aggregates		0.2722
Fine/Coarse		0.0694

Average carbon uptake in 2 hr = 8%

- Demoulded in 4hr;
- Dried in air overnight (19hr);
- Carbonated in a chamber for 2 hr at 1.5 bar with pure CO2;
- Tested at 24 hr, 7 days and 28 days

Performance of Carbonated Pervious Concrete

Age (Days)	Reference (No Compressive	(17)	Carbona		•	
1	8.223	±	0.869	12.251	±	0.646
7	13.047	±	2.259	11.817	±	0.776
14	13.190	±	2.403	11.397	±	1.515
28	16.056	±	1.845	16.115	±	1.614

Age	Reference (No	on Ca	arbonated)	Carbonated Samples			
(Days)	k (c		k (cm/s)				
1	0.949	±	0.366	1.272	±	0.100	
7	1.105	±	0.242	1.265	±	0.421	
14	0.537	±	0.072	0.854	±	0.559	
28	0.727	±	0.564	1.001	±	0.236	

Age	Reference (No	n Ca	arbonated)	Carbonated Samples			
(Days)	Absorp	(%)	Absorption (%)				
1	4.84%	±	0.11%	4.08%	±	0.04%	
7	4.31%	±	0.12%	3.74%	±	0.04%	
14	4.24%	±	0.03%	3.73%	±	0.04%	

In-Situ Carbonation Simulation

Conclusions

- Carbon dioxide can be beneficially utilized in concrete production.
- Early carbonation has no detrimental effect on late hydration strength.
- High pH value of early carbonated concrete can be maintained, while Ca(OH)₂ is eliminated.
- Carbonation curing can cost less than steam curing due to energy reduction.

Challenge

- CO₂ curing is best suited to concrete products that have large specific surface area and use low w/c ratio.
- For thick products, the reaction efficiency will be reduced.
- To promote CO₂ utilization in concrete, an innovative system is needed to provide incentives for both cement and concrete producers.

Acknowledgment

- Natural Science and Engineering Research Council of Canada (NSERC)
- Holcim Canada